KITOSAN SEBAGAI ABSORBAN IMPURITY
DALAM PEMBUATAN AGAR MEDIA

Pipih Suptijah*, Linawati Hardjito*, John Haluan*, dan Maggy T Wijaya*

Abstrak

Potensi rumput laut Indonesia yang cukup tinggi dan ekspor bahan mentah rumput laut memicu kita untuk mengantisipasi program pemerintah (industrialisasi produk dalam negeri). Produk jadi yang berasal dari rumput laut yang beredar di dalam negeri didominasi oleh produk impor, sementara Indonesia yang mengekspor bahan bakunya. Alangkah bijaknya apabila bahan baku tersebut diproses menjadi produk andalan dalam negeri dan dikonsumsi oleh konsumen sendiri serta tidak tertutup kemungkinan menjadi produk ekspor. Berbagai jenis rumput laut yang tumbuh di Indonesia diantaranya Gracilaria sp. dengan komponen primernya adalah agar-agar. Kitosan sebagai bahan absorbans mempunyai kemampuan mengabsorbsi komponen-komponen yang berukuran kecil sesuai dengan pori-porinya. Oleh karena itu tepat sekali apabila kitosan digunakan sebagai absorbans untuk mereduksi impurity (pengotor) dalam proses ekstraksi agar. Saat ini proses produksi yang memenuhi standar internasional masih dipermasalahkan untuk produk Indonesia. Oleh karena itu, perlu modifikasi proses produksi yang dapat menghasilkan produk hilir yang sesuai dengan standar komersial bahkan juga standar internasional. Salah satu alternatif proses produksi tersebut yaitu melalui input kitosan sebagai absorbans impurity dalam ekstrasinya, dengan tujuan dapat menghasilkan produk bermutu tinggi yaitu agar-agar yang bermutu tinggi untuk keperluan media, dan lain-lain. Penelitian ini bertujuan untuk mengaplikasikan kitosan sebagai absorbans, memproduksi agar dengan metode yang lebih sederhana dan tanpa bahan kimia, dan mengkaracterisasi agar-agar yang dihasilkan serta membandingkannya dengan agar bakto komersil (Difco). Metode yang digunakan dalam penelitian ini adalah absorbansi impurity oleh kitosan dalam proses ekstraksi melalui filtrasi (pemisahan), sehingga diperoleh ekstrak agar yang sudah bersih dari pengotor tinggal dilanjutkan dengan pengerengan.Hasil analisis ekstrak agar-agar menunjukkan karakteristik mutu agar-agar yang diproduksi meliputi viscositas 9,1cPs s/d 12,5cPs (bakto 17,5cPs), nilai TPC 1,8x10^1 CFU (bakto 1,1x10^2 CFU), gel strength 261,26 gf s/d 297,8 gf dengan kadar air 20,9% s/d 23% lebih besar dari agar bakto 16,9%. Pertumbuhan bakteri melalui uji TPC pada perlakuan kitosan 0,1% diperoleh nilai TPC 1,8x10^1 koloni, sedangkan nilai TPC agar bakto 1,1x10^1 koloni. Kadar sulfat agar-agar hasil perlakuan

*Dosen Institut Pertanian Bogor
absorbsi dengan kitosan menunjukkan nilai yang bervariasi, mulai dari 0,15% sampai 0,28%, Kadar sulfat tersebut lebih rendah dari agar tanpa perlakuan (0,65%), dan agar bakto sebagai standar (0,35%).

Kata kunci: absorban, agar media, kitosan.

Pendahuluan

Pada mulanya agar-agar hanya digunakan sebagai bahan makanan dan obat-obatan. Dengan kemajuan teknologi yang dicapai dewasa ini, penggunaan agar-agar semakin luas. Sampai saat ini agar-agar digunakan untuk keperluan laboratorium sebagai media kultur mikroba, dalam industri farmasi, dalam industri kosmetika, cream, sabun, lotion, kultur jaringan, dan bioteknologi (Angka, 2000; Armisen, 2000).

Agar-agar dapat digunakan sebagai bahan tambahan dalam industri kertas, tekstil, fotografi, semir sepatu, odol, pengalengan ikan, dan daging serta untuk keperluan mikrotom, museum dan kriminologi. Dalam industri pangan, agar-agar banyak dijumpai dalam berbagai bentuk, baik sebagai produk utama maupun produk tambahan bagi makanan lain (food additive) (Yunizal, 2002). Fungsi utama agar-agar adalah sebagai pemantap (stabilizer), bahan pembentuk emulsi (emulsifier), bahan pengental (thickening), bahan pengisi (icing), dan sebagai bahan pembentuk gel (gelling agent) (Indrianis & Sumiarisih, 1997).

Permasalahan yang ada selama ini adalah metode produksi agar yang cukup rumit dan panjang sehingga sampai saat ini hanya bisa memproduksi agar berkualitas pangan dan kosmetik. Hal tersebut diakibatkan kadar sulfat yang masih tinggi, padahal sulfat merupakan komponen yang dapat mengganggu baik dalam penggunaannya maupun dalam penyimpanan. Salah satu alternatif proses produksi yaitu melalui metode absorbsi impuriti dalam ekstrasi oleh kitosan sebagai absorban, dengan tujuan dapat menghasilkan agar-agar yang bermutu tinggi untuk keperluan media kultur dan lain-lain.

Penelitian ini bertujuan untuk mengaplikasikan kitosan sebagai absorban, memproduksi agar dengan metode yang lebih sederhana tanpa bahan kimia, dan mengkarakterisasi agar-agar yang dihasilkan serta membandingkannya dengan agar bakto komersial (Difco).

Bahan dan Metode

Penelitian ini dilaksanakan dengan 2 tahap yaitu tahap pre-treatment dan tahap ekstraksi. Tahap pre-treatment menggunakan larutan basa encer dengan sedikit pemuhih dengan tujuan untuk menghilangkan berbagai zat warna yang terdapat di dalam bahan dan menghilangkan gugus sulfat dalam bentuk garam yang umumnya sebagai pengotor.

Tahap ekstraksi agar dengan menggunakan kitosan sebagai absorban. Rumpun laut yang sudah di pre-treatment selanjutnya diekstraksi dengan aquades 1:30 pada suhu 100°C. Melalui filtrasi dengan nilon mesh dalam keadaan panas
bertujuan memisahkan komponen selulosa dari agar terhadap filtrat diberikan perlakuan penambahan kitosan sebagai absorban pengotor, dibarengi dengan pengadukan selama 30 menit dan terakhir pemisahan kitosan yang sudah mengabsorbsi pengotor, dihasilkan filtrat agar-agar siap dikeringkan.

Hasil dan Bahasan

Pemurnian agar dari jenis rumput laut Gracilaria, dengan menggunakan metode absorbsi impurity dapat menghasilkan agar-agar yang cukup potensial dengan karakteristik yang mengarah pada produk agar bakto. Agar bakto ini dapat digunakan sebagai media kultur mikroorganisme atau media kultur jaringan yang sampai saat ini pengadaan agar bakto tersebut hampir 100% diperoleh dari produk impor. Berdasarkan hasil perlakuan kitosan yang digunakan diperoleh karakteristik agar-agar sebagai berikut:

1. Kadar Sulfat Agar

Gambar 1 menunjukkan nilai yang bervariasi, mulai dari 0,15% sampai 0,28%, tetapi secara statistik tidak berbeda nyata. Kadar sulfat tersebut lebih rendah dari agar tanpa perlakuan (0,65%), juga lebih rendah dari agar bakto sebagai standar (0,35%). Penurunan kadar sulfat agar-agar akibat perlakuan kitosan adalah sekitar 33% (dibandingkan dengan tanpa perlakuan kitosan). Hal tersebut menunjukkan bahwa kitosan berperan aktif dalam mengabsorpsi komponen sulfat saat ekstraksi agar, sementara kontrol 1,1% adalah kadar sulfat agar hasil perlakuan, yang sudah menunjukkan penurunan kadar yang sangat besar apabila dibandingkan dengan kadar sulfat pada rumput laut Gracilaria sebagai bahan baku (17%)(Matshuhashi, 1977). Hasil perlakuan alcalin menunjukkan keberhasilan eliminasi komponen sulfat yang cukup signifikan, sampai mencapai kadar yang harus dipenuhi oleh agar media.

![Gambar 1. Histogram kadar sulfat agar-agar dengan perlakuan kitosan](image-url)
2. Viskositas Agar

Gambar 2. Histogram nilai viskositas agar-agar dengan perlakuan kitosan

Gambar 2 menunjukkan nilai viskositas agar-agar yang lebih rendah (10,8 cPs) dari agar bakto (17,6 cPs), hal ini diduga akibat absorbsi komponen sakarida pendek bermuatan sinergis dengan agar-agar : silosa, fukosa dan lain-lain (Izumi, 1971) yang menimbulkan agar agar dalam bentuk larutan netral kurang bermuatan, akibatnya tarik menarik antar ionnya jadi berkurang (Rees, 1969). Begitu juga ukuran polimernya yang lebih pendek yang akhirnya dapat menyebabkan viskositas menjadi lebih rendah. Namun demikian untuk meningkatkan viskositas agar-agar tersebut, pada penggunaannya dapat dengan meningkatkan konsentrasi supaya menjadi lebih pekat/ lebih kental.

3. Nilai TPC Agar

Gambar 3. Histogram nilai TPC agar-agar dengan perlakuan kitosan
4. Kekuatan Gel Agar

Analisis gel strength pada agar hasil penelitian, menunjukkan bahwa perlakuan absorpsi kitosan menunjukkan nilai kekuatan gel yang tidak berbeda nyata secara statistik, begitu juga bila dibandingkan dengan standar bakto agar, kontrol, dan yang tanpa perlakuan kitosan. Sehingga, perlakuan 0,1% kitosan dapat dipilih sebagai perlakuan yang paling efisien untuk diaplikasikan.

Kekuatan gel dari suatu agar media dipengaruhi oleh besar kecilnya polimer agar penyusun media tersebut serta kemurnian. Hal ini berarti kerapatan dan kemurnian agar hasil penelitian sudah setara dengan agar bakto sebagai standar. Apabila dibandingkan secara visual, agar hasil perlakuan kitosan 0,1% sedikit lebih rendah dari standar. Hal tersebut dapat diperbaiki dengan meningkatkan konsentrasi agar.

Gambar 4. Histogram kekuatan gel agar-agar dengan perlakuan kitosan
Gambar 5. Histogram proksimat agar-agar dengan perlakuan kitosan

5. Kadar Garam
Kadar garam agar-agar yang mengalami perlakuan kitosan, menunjukkan nilai yang tidak berbeda nyata secara statistik dan apabila dibandingkan dengan standar juga tidak berbeda, sedangkan bila dibandingkan dengan kontrol, ternyata perlakuan kitosan mampu menurunkan kadar garam dari 0,064 % menjadi 0,021 %, sehingga hal tersebut menunjukkan bahwa dalam pemurnian agar-agar, kitosan mempunyai kemampuan dalam mengabsorpsi komponen garam selama ekstraksi dengan kapasitas absorpsi garam mencapai 50 %, karena itu kitosan sangat mungkin digunakan dalam pemurnian komponen primer rumput laut untuk mereduksi garam, dengan asumsi bahwa molekul-molekul garam mempunyai kecocokan ukuran dengan pori-pori kitosan dan muatan.

6. Nilai Proksimat
Analisis kimia pada agar agar hasil absorbsi oleh kitosan menunjukkan parameter parameter kimiai yang tidak berbeda nyata dengan standar agar bakto, kecuali kadar air yang masih tinggi, akibatnya secara visual warna prduk agar

Kesimpulan
Karakteristik mutu agar-agar yang dihasilkan meliputi kadar sulfat 0,15 % s/d 0,28% (bakto 0,35%), viscositas 9,1cPs s/d 12,5cPs (bakto 17,5cPs), nilai TPC 1,8x10^1 CFU (bakto 1,1x10^2 CFU), gel strength 261,26 gF s/d 297,8 gF dengan kadar air 20,9% s/d 23% lebih besar dari agar bakto 16,9%. Karakteristik fisik hasil umumnya masih dibawah agar bakto (difco), hal tersebut disebabkan karena kadar air yang masih tinggi, namun kadar air tersebut masih dapat diturunkan sampai memenuhi standar agar bakto, melalui pengeringan yang lebih tepat. Pertumbuhan bakteri melalui uji TPC pada perlakuan kitosan 0,1% diperoleh nilai TPC 1,8x10^1 koloni, sedangkan nilai TPC agar bakto 1,1x10^2 koloni. Begitu juga nilai sulfatnya yang sangat menentukan dan cukup sulit menurunkannya.

Daftar Pustaka


