MARINE FISHERIES
Jurnal Teknologi dan Manajemen Perikanan Laut

2. Parameter Biologi Ikan Kerapu (Epinephelus sp.) Hasil Tangkapan di Perairan Taman Nasional Wakatobi, Sulawesi Tenggara Indonesia (Biological Parameters of Grouper (Epinephelus sp.) Caught in Wakatobi National Park, Southeast Sulawesi, Indonesia) Oleh: Muslim Tadjuddah, Budy Wiryawan, Ari Purbaayanto, Eko Sri Wiyono

3. Integrasi Pasar Komoditas Unggulan Minapolitan di Palabuhanratu (Market Integration for Major Minapolitan Commodities in Palabuhanratu) Oleh: Ardani, Tri Wiji Nurani, Ermani Lubis

4. Densitas Insulasi Polyurethane pada Palka Kapal Penangkap Ikan Tradisional di Pekalongan (Density of Polyurethane for Fish Hold Insulator on Traditional Fishing Boats in Pekalongan) Oleh: Wilma Amiruddin, Budhi Hascario Iskandar, Bambang Murciyanto, Mulyono S. Baskoro

5. Potensi Lestar Perikanan Tangkap di Kabupaten Kepulauan Sitaro (Sustainable Potential of Fisheries Capture in Sitaro Island Regency) Oleh: Joyce Kumaat, John Haluan, Budy Wiryawan, Sugeng Hari Wisudo, Daniel R. Monimjia

9. Pemanfaatan Hasil Tangkapan Sampingan Ikan Cucut dan Ikan Pari dalam Pembuatan Gelatin (By-Catch Utilization of Shark and Stingray Fish on Producing of Gelatin) Oleh: Joko Santoso, Shynie, Sarmauli I. Manurung

Alamat:
Departemen Pemanfaatan Sumber Daya Perikanan Fakultas Perikanan dan Ilmu Kelautan IPB
Jl. Lingkar Akademik, Kampus IPB Darmaga Telp. (0251) 8622935 Fax. (0251) 8421732
Email: marfish.journal@gmail.com

Dewan Editor:

Ketua:
Dr. Ir. Budy Wiryawan, M.Sc
(IPB, Penguasaan dan Perencanaan Kawasan Perikanan)

Anggota:
Prof. Dr. Ir. Bambang Murdiyanto, M.Sc
(IPB, Teknologi Alat dan Bahan Penangkap Ikan)
Prof. Dr. Ir. Ari Purbayanto, M.Sc.
(IPB, Teknologi Penangkap Ikan)
Dr. Ir. Dedy H. Sutisna, MS
(Kementrian Kelautan dan Perikanan, Kebijakan Perikanan Tangkap)
Dr. Ir. Mas Tri Djoko Sunarno, MS
(Kementrian Kelautan dan Perikanan, Perikanan Tangkap)

Dr. Ir. Budi Hascaryo Iskandar, M.Si
(IPB, Kapal dan Transportasi Perikanan)
Dr. Ir. Tri Wijji Nurani, M.Si
(IPB, Sistem dan Kebijakan Perikanan Tangkap)

Pimpinan Redaksi:
Dr. Yopi Novita, S.Pi., M.Si

Bendahara:
Prihatin Ika Wahyuningsrum, S.Pi., M.Si

Humas dan Kerjasama:
Didin Komarudin, S.Pi., M.Si.

Administrasi dan Kesekekratariatan:
Oktavianto Prastio Darmono Imelda

Harga langganan MARINE FISHERIES: Jurnal Teknologi dan Manajemen Perikanan Laut sebesar Rp 110.000 per tahun atau Rp 60.000 per eksemplar untuk pribadi (personal), Rp 130.000 per tahun atau Rp 67.000 per eksemplar untuk institusi. Biaya kirim Rp 15.000 per pengiriman (Pulau Jawa) atau Rp 20.000 per pengiriman (luar Pulau Jawa), pembayaran dilakukan ke BNI Cabang Bogor No. Rekening 016774277, a.n. Prihatin Ika Wahyuningsrum.

Alamat Redaksi: Departemen Pemanfaatan Sumber Daya Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor, Jl. Lingkar Kampus, Kampus IPB Darmaga, Bogor 16680, Telp (0251) 8622935, Fax (0251) 8421732, Email: marfish.journal@gmail.com

Cerita sampul:
Penarikan alat tangkap cantrang ke atas kapal oleh nelayan cantrang di Pantai Utara Jawa.
(Sumber foto: Naskah Sasmita et al. 2013 Halaman 51-57)
PEMANFAATAN HASIL TANGKAPAN SAMPINGAN IKAN CUCUT DAN IKAN PARI DALAM PEMBUATAN GELATIN

(By-Catch Utilization of Shark and Stingray Fish on Producing of Gelatin)

Oleh:
Joko Santoso¹, Shynie², Sarmauli I. Manurung²

¹ Departemen Teknologi Hasil Pemanfaatan, Fakultas Perikanan dan Ilmu Kelautan, IPB
² Jurusan Teknologi Pangan, Fakultas Teknologi Industri, Universitas Pelita Harapan
Korespondensi: jsantoso@ipb.ac.id

Diterima: 1 November 2012; Disetujui: 30 Januari 2013

ABSTRACT
In relation to the problem of how to utilize the by-catch of capture fisheries activities and dealing to meet the Code of Conduct for Responsible Fisheries, we processed the by-catch into added-value product. In this experiment, the skins of shark and stingray were used to produce gelatin. Five different of shark and stingray skins in the ratio composition of 100:0, 75:25, 50:50, 25:75, and 0:100 were performed on the producing of gelatin. The physical and chemical characteristics of gelatins in each treatment as well as commercial bovine gelatin were evaluated. Ratio composition of 50:50 between the skins of shark and stingray produced the best gelatin on the parameters of viscosity, gel strength, and melting point of 11.77 cP, 230.33 Bloom, and 31.9 °C, respectively. This gelatin contained of moisture, ash, fat, and protein of 6.89, 0.59, 0.71 and 82.94 g/100 g, respectively. Glycine, proline and glutamic acid were the three highest amino acids found in all the gelatins obtained.

Keywords: by-catch, compositioning, gelatin, shark, skin fish, stingray

ABSTRAK
Dalam hubungannya dengan masalah bagaimana memanfaatkan hasil tangkapan sampingan (HTS) dari aktivitas penangkapan ikan dan untuk mematuhi Code of Conduct for Responsible Fisheries, kami mengolah HTS menjadi produk bernilai tambah. Dalam penelitian ini, kulit ikan cucut dan ikan pari digunakan untuk pembuatan gelatin. Lima rasio pengkompilisasi berbeda antara kulit ikan cucut dan ikan pari 100:0, 75:25, 50:50, 25:75, dan 0:100 digunakan dalam produksi gelatin. Karakteristik fisik dan kimia gelatin dari masing-masing perilaku termasuk gelatin sapi komersial dievaluasi. Rasio pengkompilisasi kulit ikan cucut dan ikan pari 50:50 menghasilkan gelatin terbaik pada parameter viskositas, kekuatan gel dan titik leleh dengan nilai berturut-turut 11.77 cP; 230.33 Bloom dan 31.9 °C. Gelatin tersebut mengandung air, abu, lemak dan protein berturut-turut sebesar 6.89, 0.59; 0.71 dan 82.94 g/100 g. Gislin, prolin dan asam glutamat merupakan liga asam amino terbesar yang dijumpai pada seluruh gelatin yang dihasilkan.

Kata kunci: hasil tangkapan sampingan, pengkompilisian, gelatin, ikan hiu, kulit ikan, ikan pari

PENDAHULUAN
Ikan hasil tangkap sampingan (HTS) adalah ikan yang ikut tertangkap dalam suatu operasi penangkapan ikan tertentu (biasanya udang) yang sebenarnya tidak ditujukan untuk menangkap ikan tersebut. Jenis ikan HTS umumnya kurang memiliki nilai ekonomis dan seringkali tidak dibawa ke daratan. Mengingat ikan HTS bukan merupakan target utama tangkapan, maka penangannya di kapal kurang diperhatikan, sehingga jika didaratan kondisinya sudah tidak segar dan hanya diambil bagian tertentu saja, misalnya sirip. Hal ini tidak sejalan dengan program Code of Conduct for Responsible Fisheries (CCRF)
yang menegaskan untuk memanfaatkan seluruh bagian tubuh ikan yang tertangkap.

Gelatin yang dipergunakan dalam industri pangan pada umumnya bersumber dari kulit dan tulang bali atau sapi. Di negara yang mayoritas penduduknya beragama Islam, termasuk Indonesia, penggunaan gelatin yang berasal dari bali menghadapi hambatan yang berkaitan dengan kehalalan. Oleh karena itu, penggunaan gelatin di Indonesia pada umumnya berasal dari sapi. Namun, dewasa ini penggunaan gelatin yang berasal dari sapi juga mengalami peningkatan, karena adanya penyiakan Bovine Sponge Encelophathy (BSE) atau lebih dikenal dengan mad cow disease atau penyakit sapi gila. Adanya kedua masalah ini menyebabkan pemanfaatan gelatin dari kedua sumber tersebut mengalami hambatan. Oleh karena itu, pengembangan produksi gelatin dengan bahan baku ikan tidak hanya mampu mengatasi masalah yang berkaitan dengan agama, tetapi juga dapat diproduksi menggunakan bahan yang cukup murah, membuka lapangan kerja baru, serta sekaligus membantu mengatasi masalah lingkungan.

Pada penelitian ini akan dipelajari pengaruh pengkomporsiman kulit ikan pari dan ikan cucut dalam memberikan efek sinergis terhadap karakteristik fisiko kimia gelatin yang dihasilkan, sehingga dapat memberikan variasi karakteristik fisiko kimia gelatin yang berbeda untuk memperluas aplikasinya dalam industri pangan.

METODE

Bahan baku yang digunakan untuk pembuatan gelatin adalah kulit ikan cucut macan (Squalus cuvier) dan kulit ikan pari macan (Trygon dasyatis), diperoleh dari Tempat Pelelangan Ikan Muara Angke Jakarta. Bahan baku yang diperoleh segera dimasukkan dalam karung plastik, pada wadah cool box yang diberi es untuk mencelahi terjadinya kemunduran mutu dan selanjutnya dibawa ke laboratorium. Segera setelah sampai di laboratorium, bahan baku dicuci dengan air bersih (PDAM) untuk menghilangkan darah dan partikel-partikel lain yang tidak diinginkan. Bahan baku yang sudah bersih,
selanjutnya siap untuk diproses lebih lanjut menjadi gelatin.

Bahan kimia

Bahan-bahan kimia yang digunakan dalam pembuatan gelatin adalah asam asetat 1% dan etanol 95%. Bahan-bahan kimia yang digunakan dalam analisis karak-teristik gelatin antara lain asam sulfat, asam klorida, sodium hidroksida, natrium asetat, asam borat, petroleum benzena, metanol, piktoiosianat, trietilamin, asetonitril, dan buffer natrium asetat.

Pembuatan gelatin

Pembuatan gelatin mengacu pada metode Mulyani (2001) yang dimodifikasi. Kulit ikan cucut dan pari, direndam air panas selama 5-7 menit, dilanjutkan dengan pencucian menggunakan air mengalir dan dipotong-potong dengan ukuran 3x4 cm². Kulit ikan dengan komposisi ikan cucut dan pari (p:0.100, 25:75, 50:50, 75:25, dan 100:0) dilakukan perendaman dalam larutan asam asetat konsentrasi 1% selama 12 jam pada suhu kamar. Kemudian kulit dicuci dengan air mengalir sampai pH 5-6 dan diekstrak gelatininya dengan air panas suhu 90°C selama 1 jam. Ekstrak yang diperoleh disaring dua kali untuk menghilangkan kotoran, ditambah dengan etanol 95% disertai pengaduk.

Hasil akhir dikerikan dengan cabinet dryer dan penempatan hingga diperoleh tepung gelatin. Terhadap tepung gelatin yang dihasilkan dilakukan analisis fisik yaitu: viskositas, kekuatan gel, titik leleh, derajat putih dan kimia yaitu: komposisi proksimat (kadar air, abu, protein, lemak) dan komposisi asam amino. Analisis yang sama juga dilakukan terhadap gelatin sapi komersial sebagai pembanding.

Pengukuran viskositas (Marine Colloids 1984)

Pengukuran viskositas gelatin dilakukan dengan membuat larutan gelatin konsentrasi 1.5% (b/b) dipanaskan dengan pengadukan kontinyu hingga suhu mencapai 80°C kemudian didinginkan sampai 76-77°C. Contoh ditempatkan wadah silinder pengukuran pada Viscometer Brookfield, menggunakan spindel No. 1 pada kecepatan 100 rpm. Skala pada alat dibaca setelah beberapa kali putaran dan angka yang ditunjukkan pada alat sudah stabil.

Pengukuran kekuatan gel (Manual of Farrel's LFRA Texture Analyzer)

Kekuatan gel gelatin diukur dengan membuat larutan gelatin dengan konsentrasi 6.67%. Sebanyak 15 mL larutan tersebut selanjutnya dikondisikan pada suhu 10°C selama 16 jam, sehingga terbentuk gel. Gel yang dihasilkan selanjutnya dianalisa kekuatan gelinya dengan Farrel’s LFRA Texture Analyzer dengan menggunakan probe silinder TA 10. Kecepatan probe diatur 0,5 mm/s dan jarak 4 mm. Kekuatan gel merupakan berat beban yang tercatat pada saat gel patah hingga kedalaman 4 mm, yang dinyatakan dalam satuan Bloom.

Penentuan titik leleh (Marine Colloids 1984)

Titik leleh gelatin diukur dengan membuat larutan gelatin dengan konsentrasi 6.67% (b/b). Sebanyak 15 mL larutan tersebut dipanaskan dalam tabung percobaan, kemudian didinginkan sehingga terbentuk gel gelatin. Gel yang terbentuk dikondisikan pada suhu kamar selama 1 jam. Pengukuran titik leleh gel dilakukan dengan cara memasukkan gel gelatin dalam water bath dengan kecepatan penghangatan 1 °C/min. Di atas gel diletakkan gotri dan suhu saat gotri gelatin jatuh ke dasar gel dicatat sebagai titik leleh.

Pengukuran derajat putih (Balmaceda et al. 1984)

Sampel disiapkan dan diletakkan pada cawan petri secara merata. Masing-masing sampel tersebut diukur derajat putihnya menggunakan alat Minolta Chromameter, dengan membandingkan pada warna standar yaitu derajat putih. Hasil yang diperoleh dari alat Minolta Chroma Meter adalah nilai L, a, b. Hasil nilai L, a, dan b tersebut selanjutnya dikonversikan menjadi nilai derajat putih dengan rumus:

\[
Wo (%) = 100 - \sqrt{(100 - L)^2 + a^2 + b^2}
\]

Analisis komposisi proksimat (AOAC 1999)

Kadar air dianalisis dengan menggunakan oven pada suhu 105°C sampai diperoleh berat konstan, sedangkan kadar abu ditentukan dengan metode pengubahan kering menggunakan tanur. Kadar protein kasar dianalisis dengan metode Kjeldahl dengan tahapan destruksi, destilasi dan titrasi. Penetapan kadar lemak dilakukan dengan metode soxhlet, menggunakan pelarut petroleum benzena.

Analisis komposisi asam amino (AOAC 1995)

Analisis komposisi asam amino dilakukan dengan tahapan sebagai berikut. Sampel sebanyak 0,5 g sampel dimasukkan dalam tabung 25 mL, dihidrolisis dengan menggunakan HCl 6 N sebanyak 10 mL, dipanaskan selama 24 jam pada suhu 100°C, lalu disaring. Filtrat sebanyak 30 mL ditambahkan larutan penge-
ring berupa metanol, piktoiosianat, dan trietilamin. Contoh selanjutnya diker akan atau divakumkan kemudian ditambahkan 30 mL larutan derivatisasi (metanol, natrium asetat, dan trimetilamin). Selanjutnya sampel didiamkan selama 20 menit dan ditambahkan 200 mL natrium asetat 1 M. Sebanyak 20 mL sampel diinjeksi ke dalam alat HPLC dengan kondisi operasional sebagai berikut: temperatur suhu ruang; kolom pico tag 3.9 x 150 mm; kecepatan alir 1.5 mL/min; batas tekanan 3000 psi; program gradien; fase gerak asetonitril 60% buffer natrium asetat 1 M; detektor UV; dan panjang gelombang 254 nm.

Kadar asam amino dihitung dengan menggunakan rumus:

\[
\text{Asam amino} \left(\frac{mg}{g \text{ protein}} \right) = \frac{\text{Luas area contoh}}{\text{Luas area standar}} \times \frac{\text{konsentrasi standar}}{\text{bobot sampel}} \times BM \times FK \times 100
\]

Data dianalisis dengan analisis ragam, menggunakan model rancangan percobaan acak lengkap satu faktor, yaitu pengaruh rasio perbandingan komposisi kulit ikan cuset dan ikan pari terhadap gelatin yang dihasilkan dengan 6 taraf serta tiga kali pengulangan, serta menggunakan uji lanjut Tukey (Steel dan Torrie 1980).

HASIL DAN PEMBAHASAN

Karacteristik Fisik Gelatin

Rendemen gelatin hasil penelitian lebih rendah dibandingkan dengan penelitian yang dilakukan oleh Jamilah et al. (2011) pada tiga jenis ikan air tawar yaitu nila, lele dan patin. Rendemen gelatin yang dihasilkan berturut-turut sebesar 39.97; 32.26 dan 26.23%. Selain dipengaruhi oleh jenis bahan baku, rendemen gelatin juga dipengaruhi oleh metode ekstraksi. Tingginya rendemen yang dihasilkan pada penelitian yang dilakukan oleh Jamilah et al. (2011) karena metode ekstraksi yang digunakan adalah metode basa, menggunakan Ca(OH)2 dengan konsentrasi 27g/L dan dilakukan selama 14 hari. Rendemen hasil penelitian lebih tinggi dibandingkan dengan penelitian yang dilakukan oleh Khairi et al. (2013) yang menggunakan bahan baku tulang ikan Atlantic mackerel (Scomber scombrus) dan blue whiting (Micromesistius poutassou) dengan perlakuan NaOH atau enzim (alcalase, flavourzyme), menghasilkan kisaran rendemen 1.0-3.7%. Rendemen gelatin yang dihasilkan dari tulang ikan patin dengan menggunakan asam klorida (perbandingan tulang dan asam klorida 1:8 (b/v)) sebesar 13,86% (Mahmoodan et al. 2012) relatif sama dengan rendemen gelatin hasil penelitian. Jiang (2013) melaporkan bahwa hidrolis optimus sisik ikan pada kondisi suhu 50°C, pH 9, menggunakan enzim alkaline proteinase 3% (b/v) selama 6 jam menghasilkan rendemen gelatin sebesar 48,1% (b/v). Pada kondisi hidrolis optimus menggunakan NaOH sebagaimana dilakukan Jakhar et al. (2012) pada kulit ikan blackspotted croaker (Protonibea diacanthus) menghasilkan nilai kkuatan gel gelatin 422,69 g.

Pengkomposision mampu meningkatkan nilai kekuatan gel dan viskositas gelatin yang dihasilkan. Meningkatnya kekuatan gel dan viskositas larutan gelatin hasil pengkomposisiannya menunjukkan bahwa interaksi yang terjadi antara protein dari kulit ikan cuset dengan protein dari kulit ikan pari memberikan efek sinergis terhadap karakteristik kekuatan gel gelatin. Polimerisasi protein melalui ikatan kovalen nondisulfida diduga sebagai penyebab meningkatnya nilai kekuatan gel, sebagaimana fenomena yang terjadi pada pembentukan gel ikan (Chanarat dan Benjakul 2013). Agregasi protein dapat terjadi melalui proses pemanasan, diawali dengan terjadinya denaturasi yaitu terbukanya struktur protein dari struktur alami-nya dan kemudian memungkinkan terjadinya agregasi antar molekul (Fitzsimons et al. 2007).

Titik leleh gelatin hasil pengkomposisi jauh lebih tinggi dibandingkan dengan gelatin
kulit ikan cod (8-10°C) (Gudmundsson dan Hafsteinsson 1997), hake (14°C), sofe (19.4°C), megrin (18.8 °C) (Gómez-Guillén et al. 2002) dan grass carp (19.5°C) (Kasankala et al. 2007). Titik leleh gelatin hasil pengkombosian juga lebih tinggi dibandingkan dengan gelatin dari sapi dan babi dengan nilai berturut-turut 23,8°C dan 25,6°C (Cho et al. 2005). Gelatin dengan titik leleh tinggi mempunyai aplikasi yang lebih luas.

Karakteristik warna gelatin hasil penelitian yaitu nilai derajat putihnya hampir sama (57,80-66,65%). Nilai derajat putih gelatin hasil penelitian lebih rendah dibandingkan dengan gelatin kulit ikan nila (78,6%), dan hampir sama dengan gelatin kulit ikan lele (66,31%) dan patin (67,6%) sebagaimana dilaporkan Jamilah et al. (2011). Perbedaan tersebut dikarenakan perbedaan pigmen yang secara alami terdapat dalam bahan baku (kulit ikan).

Karakteristik fisik gelatin hasil pengkombosian dan gelatin sapi komersial disajikan pada Gambar 1. Secara umum, pengkombosian kulit ikan cucut dan ikan pari memberikan pengaruh nyata (p< 0,05) terhadap sifat fisik gelatin yang dihasilkan, yaitu: rendemen, kekuatan gel, titik leleh dan viskositas; sedangkan nilai derajat putih tidak berpengaruh nyata (p> 0,05).

Karakteristik Kimia Gelatin

Kadar air gelatin dipengaruhi oleh metode pengeringan yang digunakan. Perbedaan ini

Gambar 1 Karakteristik fisik gelatin hasil pengkombosian dan gelatin sapi komersial; histogram yang diikuti huruf berbeda menunjukkan berbeda nyata (p<0,05), sedangkan yang diikuti huruf sama menunjukkan tidak berbeda nyata (p>0,05)
menunjukkan bahwa metode pengeringan yang digunakan dalam pembuatan gelatin sapi komersial berbeda dengan metode pengeringan yang digunakan pada penelitian, dimana kelima gelatin kutil ikan tersebut dikerahkan dengan cabinet dryer. Kadar air gelatin kutil ikan hasil penelitian Jamilah et al. (2011) adalah 7,28-8,51%, sedikit lebih tinggi dibandingkan dengan gelatin hasil penelitian; sedangkan Mahmoodani et al. (2012) mendapatkan kandungan air gelatin tulang patin sebesar 9,2%. Standar Nasional Indonesia (SNI 06-3735-1995) menyarankan kadar air maksimum 16%.

Kandungan abu gelatin hasil pengkomposisian (0,45-0,68%) lebih tinggi dibandingkan dengan gelatin yang diperoleh dari penelitian Jamilah et al. (2011) yaitu 0,08-0,26%. Hal ini terkait adanya proses ionisasi dalam pembuatan gelatin yang mampu menghilangkan sebagian mineral. Gelatin yang dibuat dari kulit ikan skate (Raja kenojei) dengan proses yang sama tetapi tanpa ionisasi, mengandung kadar abu lebih tinggi 1,4% (Cho et al. 2006). Kadar abu dari kelima jenis gelatin hasil pengkomposisian masih memenuhi standar mutu gelatin menurut SNI 06-3735-1995 yaitu maksimum 3,25%. Kadar abu yang rendah menunjukkan kualitas gelatin yang tinggi, dan menurut Jones (1977) batas maksimal kadar abu adalah 2,6% yang secara normal dapat diaplikasikan pada pangan. Kadar abu pada gelatin yang berasal dari kulit ikan sangat dipengaruhi oleh proses pencucian dan pembersihan. Makin baik dan sempurna proses pencucian dan pembersihan akan menyebabkan penurunan kadar abu dari gelatin yang dihasilkan.

Makin rendah kadar lemak gelatin, menunjukkan gelatin yang dihasilkan semakin murni. Masih terdapatnya kandungan lemak dalam gelatin, menunjukkan bahwa proses penghilangan lemak melalui proses pembersihan dan pencucian dengan perendaman air panas belum sempurna. Kadar lemak gelatin hasil penelitian nilainya hampir sama dengan gelatin dari tulang ikan patin 0,96% (Mahmoodani et al. 2012).

Kadar protein gelatin juga merupakan salah satu faktor penentu kemurnian gelatin yang dihasilkan. Makin tinggi kadar proteininya, maka gelatin yang dihasilkan akan semakin murni, karena pada hakakatnya gelatin merupakan protein. Kandungan protein gelatin hasil pengkomposisian (82,47-85,09%) lebih tinggi dibandingkan dengan gelatin dari kulit ikan lele (77,88%) dan ikan patin (80,02%); tetapi lebih rendah dibandingkan dengan gelatin kulit ikan nila (93,25%) (Jamilah et al. 2011) dan gelatin tulang ikan patin 87,3% (Mahmoodani et al. 2012). Al-Saidi et al. (2011) melaporkan kisaran kandungan protein gelatin dari kulit ikan shaari dengan perlakuan suhu dan konsentrasi asam asetat dalam proses hidrolisis adalah 64,67-87,67%.

Gambar 2 menyajikan karakteristik kimia gelatin hasil pengkomposisian dan gelatin sapi komersial. Pengkomposisian memberikan pengaruh nyata terhadap parameter protein gelatin (p<0,05), sedangkan terhadap parameter kadar air, abu dan lemak tidak dipengaruhi oleh metode pengkomposisian (p>0,05).

Meskipun pengkomposisian memberikan pengaruh nyata terhadap kadar protein gelatin, tetapi nilainya masih lebih rendah dibandingkan dengan gelatin sapi komersial. Kisaran kadar protein gelatin hasil pengkomposisian adalah 82,47-85,09%; dan kadar protein gelatin sapi komersial adalah 87,98%. Kadar air dan abu gelatin sapi komersial lebih tinggi dan berbeda nyata dibandingkan dengan gelatin hasil pengkomposisian, dengan nilai berturut-turut 11,90% dan 1,13%. Kisaran kadar lemak gelatin hasil pengkomposisian dan gelatin sapi komersial adalah 0,50-0,72%.

Komposisi asam amino

Kandungan asam amino yang penting dalam mempengaruhi karakteristik gelatin adalah asam amino prolin. Penelitian yang dilakukan Mahmoodani et al. (2012) menunjukkan bahwa kandungan asam amino prolin pada gelatin kulit ikan patin sebesar 114 mg/g protein. Jamilah et al. (2011) melaporkan kandungan asam amino prolin gelatin kulit ikan nila, lele dan patin berturut-turut 127,71; 122,65 dan 136,14 mg/g protein. Kesemuanya nilai tersebut lebih tinggi dibandingkan dengan kandungan prolin pada gelatin hasil pengkomposisian. Gelatin dengan kandungan asam amino glisin dan prolin tinggi akan mempunyai nilai kekuatan gel yang tinggi pula. Gelatin hasil pengkomposisian ikan kulit ikan cuctan dan ikan pari 50:50 mempunyai kandungan asam amino
glisin dan prolin 253,96 mg/g protein mempunyai nilai kekuatan gel 230,33 Bloom.

Stabilitas gelatin sangat dipengaruhi oleh kandungan asam amino prolin, karena asam amino tersebut akan membentuk struktur heliks yang kuat dan mempertahankan stabilitas struktur triple heliks. Oleh karena itu, makin tinggi kandungan asam amino prolin, maka gel yang terbentuk akan semakin stabil terhadap pemanasan sehingga titik lelehnya semakin tinggi (Poppe 1992). Hal ini sesuai dengan hasil analisis titik leleh gelatin, yaitu bahwa gelatin ikan cucut yang memiliki kandungan prolin terbanyak memiliki titik leleh yang paling tinggi.

Gelatin dari kulit ikan cucut mempunyai jumlah total asam amino tertinggi (799,61 mg/g protein), sedangkan gelatin dari hasil pengkomposisian cucut:pari (75:25) mempunyai jumlah asam amino terendah (729,80 mg/g protein) (Tabel 1). Gelatin sapi komersial sebagai pembanding menganjurkan total asam amino sebesar 761,68 mg/g protein.

Glisin, asam glutamat dan prolin merupakan asam amino utama penyusun gelatin. Gelatin yang berasal dari ikan pari, mempunyai kandungan asam amino glisin dan asam glutamat tertinggi masing-masing sebesar 156,50 mg/g protein dan 141,56 mg/g protein, sedangkan kandungan glisin terendah (136,85 mg/g protein) dan asam glutamat terendah (131,72 mg/g protein) berturut-turut terdapat pada gelatin hasil pengkomposisian ikan cucut dan pari dengan rasio pengkomposisian 75:25 dan 25:75. Gelatin yang dibuat dari ikan cucut mempunyai kandungan asam amino prolin tertinggi (101,04 mg/g protein) dan kandungan prolin terendah terdapat pada gelatin hasil pengkomposisian ikan cucut dan pari dengan rasio 75:25 dengan nilai 84,41 mg/g protein. Kandungan asam amino gelatin sapi komersial terhadap ketiga asam amino penyusun utama nilainya berada pada kisaran gelatin hasil pengkomposisian.

KESIMPULAN

Pengkomposisian kulit ikan cucut dan ikan pari dapat meningkatkan karakteristik fisik gelatin dibandingkan dengan penggunaan kulit ikan tersebut secara tunggal, pada parameter

Gambar 2 Karakteristik kimia gelatin hasil pengkomposisian dan gelatin sapi komersial; histogram yang dilukis huruf berbeda menunjukkan berbeda nyata (p<0,05), sedangkan yang dilukis huruf sama menunjukkan tidak berbeda nyata (p>0,05)
<table>
<thead>
<tr>
<th>Asam amino (mg/g protein)</th>
<th>Rasio pengkomposisan kulit ikan cucut dan ikan pari</th>
<th>Gelatin sapi komersial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100:0</td>
<td>75:25</td>
</tr>
<tr>
<td>Asam aspartat</td>
<td>56,64</td>
<td>57,85</td>
</tr>
<tr>
<td>Asam glutamat</td>
<td>134,42</td>
<td>135,34</td>
</tr>
<tr>
<td>Serin</td>
<td>23,44</td>
<td>22,42</td>
</tr>
<tr>
<td>Glisin</td>
<td>151,35</td>
<td>136,85</td>
</tr>
<tr>
<td>Histidin</td>
<td>22,09</td>
<td>17,35</td>
</tr>
<tr>
<td>Arginin</td>
<td>29,87</td>
<td>24,20</td>
</tr>
<tr>
<td>Treonin</td>
<td>19,38</td>
<td>17,12</td>
</tr>
<tr>
<td>Alanin</td>
<td>9,14</td>
<td>10,25</td>
</tr>
<tr>
<td>Prolin</td>
<td>101,04</td>
<td>84,41</td>
</tr>
<tr>
<td>Trosin</td>
<td>32,16</td>
<td>32,72</td>
</tr>
<tr>
<td>Valin</td>
<td>43,69</td>
<td>44,05</td>
</tr>
<tr>
<td>Methionin</td>
<td>15,31</td>
<td>12,26</td>
</tr>
<tr>
<td>Sistin</td>
<td>9,39</td>
<td>8,10</td>
</tr>
<tr>
<td>Isoleusin</td>
<td>31,44</td>
<td>19,73</td>
</tr>
<tr>
<td>Leusin</td>
<td>30,60</td>
<td>29,99</td>
</tr>
<tr>
<td>Fenilalanin</td>
<td>48,69</td>
<td>39,07</td>
</tr>
<tr>
<td>Lisin</td>
<td>46,76</td>
<td>38,09</td>
</tr>
<tr>
<td>Total asam amino</td>
<td>799,61</td>
<td>729,80</td>
</tr>
</tbody>
</table>

viskositas, kekuatan gel dan titik leleh. Pengkomposisian kulit ikan cucut dan ikan pari pada rasio 50:50, dapat meningkatkan nilai viskositas, kekuatan gel, dan titik leleh gel gelatin yang dihasilkan.

Gelatin hasil penelitian lebih baik dari gelatin sapi komersial dalam hal viskositas, kekuatan gel, titik leleh, kadar air dan kadar abu. Pengkomposisian kulit ikan cucut dan ikan pari memberikan efek sinergis terhadap karakteristik fisico-kimia gelatin yang dihasilkan, sehingga dapat dimanfaatkan sebagai sumber gelatin baru yang halal dan aman.

DAFTAR PUSTAKA

Gómez-Guilén MC, Tumay J, Fernández-Díaz MD, Olmo N, Lizarrbe MA, Montero P. 2002. Structural and physical properties...

